Computation I (5EIA0) Exam Training (CA) Answers 2021

Original authors SPIM: Tom van Nunen, Sjors van Riel, Thomas Lippens Version 2021-2022: Esther Maas

Monday November 1, 2021

1 CA questions

Answer 1

Miss cycles per instruction: I-cache: $0.08 \times 50 = 4.0$ cycles D-cache: $0.4 \times 0.2 \times 50 = 4.0$ cycles Actual CPI = CPI_base + Miss_cycles per data fetch + Miss_cycles per instruction = 4.0 + 4.0 + 4.0 = 12.0Ideal processor is 12.0 / 4.0 = 3 times faster

The correct answer is: 3

Answer 2

Number of words in a data-block $= 2^{(32-18-10-2)} = 2^2 = 4$ words.

Cache size (bits) = Ncache_blocks * associativity * block_size = $2^{10} * 2 * (32^{*4} + 18 + 1 + 1) = 1024 * 4 * 148 = 606208$ bits

The correct answer is: 606208

Answer 3

Tag size = N_address_bits - index - $2\log(number_words_in_block)$ - $2\log(number_bytes_in_word)$ = 32 - 12 - $2\log(8)$ - $2\log(4)$ = 32 - 12 - 3 - 2 = 15 bits

The correct answer is: 15

Answer 4

One sw instruction is one word. A block of 16 bytes can have 16/4 = 4 words.

The correct answer is: 4

Answer 5

Number of cache locations = 256 bytes / 4 bytes per block (1 word of 4 bytes each) = 64

The memory block address (not byte address, but block address) = 516 / 4 bytes = 129

Cache block number (location or entry) = $129 \mod 64 = 1$

The correct answer is: 1

Answer 6

The minimum number of instructions per second (worst-case frequency) is determined by the critical timing path. For the 5-stage pipelined architecture this can be any of the 5-stages. From the given timings it is clear the ALU stage is the most critical, since its hardware blocks take highest amount of time.

It includes Mux, and ALU itself (1ns + 4ns).

Therefore, the stage requires 5 ns.

Therefore the minimum number of instructions per second (worst-case instruction execution frequency) $f_{\rm max} = 1/5$ ns = 200 MHz.

The correct answer is: 200

Question 7

The minimum number of instructions per second (worst-case frequency) is determined by the critical timing path. Usually a LW (load word) instruction triggers this critical path. The critical path of a LW requires the following time (all in ns):

6 (Instruction fetch) + 2 (Register read) + 6 (ALU address calculation) + 6 (Data read) + 2 (Register writeback) + 3 (3 Muxes in the path of LW) = 25 ns.

The Control blob operates in parallel and takes much less time (1 ns), so should not be taken into the computation.

Therefore the worst-case frequency $f_m ax = 1/25ns = 40MHz$.

The correct answer is: 40 MHz

Question 8

The correct answer is: Data and Control hazards

Question 9

The Addition instruction should wait in its RegisterRead stage for the computation of \$\$0. The Subtraction instruction computes the value for \$\$0.

When Addition gets into the RegisterRead stage, the Subtraction instruction just gets into the ALU stage.

Addition should wait for ALU (20ns) and RegisterWrite (20ns) stages of Subtraction, before \$\$0 becomes available.

The correct answer is: 40

Answer 10

- in front: the first 4 bits from the current PC value

- at the end: 00 to get not word-address, but byte-address

The first 4 bits of the current PC value (0x00fffff) are 0000 (just convert the hexadecimal 0x00fffff into binary).

The correct answer is: 4

Answer 11

One of the efficient conversions:

In total: 5 assembly instructions

The correct answer is: 5

Answer 12

I-format instruction Opcode of beq: 000100 \$t0 register number is 9: 01000 \$t2 register number is 10: 01010 Offset is -4 - PC = -4 - 1 = -5. Binary value in two's complement: 1111111111111

Question 13

```
main:
    move $22,$0
                    # This initializes 22 to zero
                    \# initialize register 21 – addition operand (interval) to 50
    li $21, 50
    li $v0, 5
                    \# Set $v0 to 5, this tells syscall
                       to read an integer from the console
    syscall
    move $23, $v0
                    \# $23 is a register used as a counter (here you enter 4)
loop:
    beq 0, 23, quit # if the counter is zero then quit
    add \$22, \$22, \$21 \# \$22 = \$22 + \$21
    addi $23, $23, -1 \# $23 = $23 - 1 (update counter)
    j loop
quit:
                    # Load the resulting value to print into $a0
    move $a0, $22
                    \# Set $v0 to 1, this tells syscall to
    li $v0, 1
                       print the integer specified by $a0
    syscall
                    \# Now print the integer
```

As a result, four iterations, four times adding 50 = 200

The correct answer is: 200

Question 14

```
.text
main:
    li $v0, 5
                         \# read number into v0
    syscall
                         # make the syscall read_int
    move $t0, $v0
                         \# move the number read (10) into $t0
    li $v0, 5
                         \# read second number into v0
    syscall
                         # make the syscall read_int
    move $t1, $v0
                         \# move the number read (10) into $t1
    sub $t2, $t0, $t1
                         \# 10 - 10 = 0
    move a0, t2
                         \# move the number 0 to print into a0
    li $v0, 1
                         # load syscall print_int into $v0
    syscall
                         #
    li $v0, 10
                         \# syscall code 10 is for exit
    syscall
```

The correct answer is: The program will print 0 to console

Question 15

The correct answer is: Instruction Memory, Mux, Register Read, Sign-extend, Mux, ALU, Data Memory, Mux, Register Write

Question 16

The correct answer is: Instruction Memory, Mux, Register Read, Mux, ALU, Mux, Register Write

Question 17

The correct answer is ${\bf c}:$

Figure 1:

Question 18

The correct answer is **OR gate or XOR gate.**

2 Spim

In the SPIM programming exercises the following SPIM directives are used:

.text	Start text segment.
.data	Start data segment.
.asciiz str	Store the string in data memory
.word 1,40,,n	Store n words (32 bit) into data memory.i
.space n	Reserve n bytes in data memory.

This are the SPIM System Calls:

Table 1: SPIM System Calls				
Function	Syscall (value in \$v0)	Arguments	Return value	
Print integer	1	\$a0: integer		
Print string	4	\$a0: string		
Read integer	5		\$v0: integer	
Exit	10			

Printing Negative Numbers

	tovt
moin.	
main.	$1a \phi S1, N$
	la \$s2, A
	mul \$s3, \$s1, 4
	add \$s3, \$s2, \$s3
loop:	bge \$s2, \$s3, done
	lw \$t0, 0(\$s2)
	bge \$t0, \$zero, skip
	move \$a0, \$t0
	li \$v0. 1
	syscall
skin	addi $\$$ 2 $\$$ 2 4
BRIP.	i loon
dana	J 100p
done:	11 ΦVO, 10
	syscall
	.data
A:	.word 79, -13, -90, 80, 12, 0, -4, 23, -45, 7
N:	.word 10

Calculating Sum of Absolute Values

.text main: move \$0, \$zero la \$s1, N lw \$s1, 0(\$s1) la \$s2, A mul \$s3, \$s1, 4 add \$s3, \$s2, \$s3 bge \$s2, \$s3, done loop: lw \$t0, 0(\$s2) bge \$t0, \$zero, skip sub \$t0, \$zero, \$t0 add \$s0, \$s0, \$t0 skip: addi \$s2, \$s2, 4 j loop move \$a0, \$s0 done: li \$v0, 1 syscall li \$v0, 10 syscall .data A: .word 79, -13, -90, 80, 12, 0, -4, 23, -45, 7 N: .word 10